Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers
نویسندگان
چکیده
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.
منابع مشابه
A General Solution for Implicit Time Stepping Scheme in Rate-dependant Plasticity
In this paper the derivation of the second differentiation of a general yield surface implicit time stepping method along with its consistent elastic-plastic modulus is studied. Moreover, the explicit, trapezoidal implicit and fully implicit time stepping schemes are compared in rate-dependant plasticity. It is shown that implementing fully implicit time stepping scheme in rate-dependant plasti...
متن کاملPractical Implementation of Krylov Subspace Spectral Methods
Krylov subspace spectral methods have been shown to be high-order accurate in time and more stable than explicit time-stepping methods, but also more difficult to implement efficiently. This paper describes how these methods can be fashioned into practical solvers by exploiting the simple structure of differential operators Numerical results concerning accuracy and efficiency are presented for ...
متن کاملSuper-time-stepping Acceleration of Explicit Schemes for Parabolic Problems
The goal of the paper is to bring to the attention of the computational community a long overlooked, very simple, acceleration method that impressively speeds up explicit time-stepping schemes, at essentially no extra cost. The authors explain the basis of the method, namely stabilization via wisely chosen inner steps (stages), justify it for linear problems, and spell out how simple it is to i...
متن کاملSuper - Time - Stepping Acceleration Ofexplicit Schemes for Parabolic
The goal of this paper is to bring to the attention of the computational community a long overlooked, very simple, acceleration method that impressively speeds up explicit time-stepping schemes, at essentially no extra cost. We explain the basis of the method, namely stabilization via wisely chosen inner steps (stages), justify it for linear problems, and spell out how simple it is to incorpora...
متن کاملA Stability Study of a New Explicit Numerical Scheme for a System of Differential Equations with a Large Skew-Symmetric Component
Explicit numerical methods for the solution of a system of stiff differential equations suffer from a time step size that approaches zero in order to satisfy stability conditions. Implicit schemes allow a larger time-step, but require more computations. When the differential equations are dominated by a skew-symmetric component, the problem is not stiffness in the sense that the size of the eig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1610.01265 شماره
صفحات -
تاریخ انتشار 2016